TeachingBase

NetLogo-Modelle

Die Themen Evolution und Nachhaltigkeit sind mit mehreren Lernschwierigkeiten verbunden, denn sie sind das Ergebnis komplexer Wechselbeziehungen zwischen Organismen und ihrer Umwelt, und evolutionär-ökologische Prozesse spielen sich meist über größere Raum- und Zeitdimensionen ab. Diese Prozesse sind weit entfernt von unserer Alltagserfahrung, in der wir eher kurzfristige und direkte Wechselbeziehungen erleben, und in denen wir eher Individuen wahrnehmen und nicht sich verändernde Populationen.

Computersimulationen bzw. dynamische Modelle können helfen, diese Lernschwierigkeiten zu überwinden – ähnlich wie Teleskope und Mikroskope erlauben sie es, Sachverhalte zu erkennen, die mit dem “bloßen Auge” nicht sichtbar sind. Computersimulationen können Prozesse über größere Raum- und Zeitdimensionen modellhaft darstellen, und eignen sich daher besonders für das Beobachten, Untersuchen und Verstehen von ökologischen Zusammenhängen, Populationsmustern, und evolutionären Prozessen.

Wir entwickeln Modelle mithilfe der kostenfreien Modellierungssoftware NetLogo.

Die Präsentation gibt eine Einführung in die grundlegenden Elemente und Funktionen der NetLogo-Benutzeroberfläche und in die agentenbasierte Modellierung.

Ausgewählte Modelle

NetLogo: Zwei Förster

Eine interaktive Einführung in Konzepte der Ökologie, Verhaltensökologie und Nachhaltigkeit mithilfe einer Computersimulation eines einfachen sozial-ökologischen Systems

NetLogo: Zwei Gemeinden

Dieses NetLogo-Modell erweitert das Modell Zwei Förster und führt eine größere und komplexere Populationsstruktur ein.

NetLogo: Evolution und Konkurrenz um Ressourcen (abstrakt)

Mit diesem Modell können Schüler:innen beobachten, wie Konkurrenz um Ressourcen die Evolution einer Population beeinflusst und zur Übernutzung der Ressource führen kann. Dieses Modell ähnelt dem Modell Evolution und Konkurrenz um Ressourcen (Forst), ist aber abstrakter.

NetLogo: Inselwelt

Dieses Modell simuliert die Evolution von Populationen in einer räumlich strukturierten Umwelt, was bedeutet, dass Ressourcen und Populationen nicht völlig zufällig oder gleichmäßig über die ganze Welt verteilt sind. Hier wirken mehrere Evolutionsmechanismen, insbesondere Migration, Gründereffekt, Isolation und Multilevel-Selektion.

Literatur

Aktipis, C. A., Cronk, L., & de Aguiar, R. (2011). Risk-Pooling and Herd Survival: An Agent-Based Model of a Maasai Gift-Giving System. Human Ecology, 39(2), 131–140. https://doi.org/10.1007/s10745-010-9364-9
Aktipis, C. A., De Aguiar, R., Flaherty, A., Iyer, P., Sonkoi, D., & Cronk, L. (2016). Cooperation in an Uncertain World: For the Maasai of East Africa, Need-Based Transfers Outperform Account-Keeping in Volatile Environments. Human Ecology, 44(3), 353–364. https://doi.org/10.1007/s10745-016-9823-z
Alonso-Betanzos, A., Sanchez-Marono, N., Fontenla-Romero, O., Polhill, J. G., Craig, T., Bajo, J., & Corchado, J. M. (2017). Agent-Based Modeling of Sustainable Behaviors (A. Alonso-Betanzos, N. Sanchez-Marono, O. Fontenla-Romero, J. G. Polhill, T. Craig, J. Bajo, & J. M. Corchado, Eds.). Springer. https://doi.org/10.1007/978-3-319-46331-5
Bauduin, S., McIntire, E. J. B., & Chubaty, A. M. (2019). NetLogoR: a package to build and run spatially explicit agent-based models in R. Ecography, 42(11), 1841–1849. https://doi.org/10.1111/ecog.04516
Belzen, A. U. zu, Krüger, D., & Editors, J. van D. (2019). Towards a Competence-Based View on Models and Modeling in Science Education (A. U. zu Belzen, D. Krüger, & J. van D. Editors, Eds.). Springer. https://doi.org/10.1007/978-3-030-30255-9_7
Boersma, K., Waarlo, A. J., & Klaassen, K. (2011). The feasibility of system thinking in biology education. Journal of Biological Education, 45(4), 190–197. https://doi.org/10.1080/00219266.2011.627139
Boissau, S., & Castella, J.-C. (2003). Constructing a Common Representation of Local Institutions and Land Use Systems through Simulation-Gaming and Multiagent Modeling in Rural Areas of Northern Vietnam: The SAMBA-Week Methodology. Simulation & Gaming, 34(3), 342–357. https://doi.org/10.1177/1046878103255789
Boyd, R. T., & Richerson, P. J. (2002). Group beneficial norms can spread rapidly in a structured population. Journal of Theoretical Biology, 215(3), 287–296. https://doi.org/10.1006/jtbi.2001.2515
Bravo, G. (2011). Agents’ beliefs and the evolution of institutions for common-pool resource management. Rationality and Society, 23(1), 117–152. https://doi.org/10.1177/1043463110387268
Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. AERA.
Castella, J., Trung, T. N., & Boissau, S. (2005). Participatory Simulation of Land-Use Changes in the Northern Mountains of Vietnam: the Combined Use of an Agent-Based Model, a Role-Playing Game, and a Geographic Information System. Ecology and Society, 10(1).
Centola, D., Wilensky, U., & McKenzie, E. (2000). A hands-on modeling approach to evolution: Learning about the evolution of cooperation and altruism through multi-agent modeling-The EACH Project. Proceedings of the Fourth International Conference of the Learning Sciences, 166–173.
Clarke-Midura, J., Pope, D. S., Maruca, S., Abraham, J. K., & Meir, E. (2018). Iterative design of a simulation-based module for teaching evolution by natural selection. Evolution: Education and Outreach, 11(1), 4. https://doi.org/10.1186/s12052-018-0078-6
Currie, T. E., Campenni, M., Flitton, A., Njagi, T., Ontiri, E., Perret, C., & Walker, L. (2021). The cultural evolution and ecology of institutions. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1828), rstb.2020.0047. https://doi.org/10.1098/rstb.2020.0047
d’Aquino, P., Le Page, C., Bousquet, F., & Bah, A. (2003). Using Self-Designed Role-Playing Games and a Multi-Agent System to Empower a Local Decision-Making Process for Land Use Management: The SelfCormas Experiment in Senegal. Journal of Artificial Societies and Social Simulation, 6(3). http://jasss.soc.surrey.ac.uk/6/3/5.html
Darling, N., Salter, R., & Burns, I. (2021). Nova: A Novel Tool for Collaborative Agent-Based and Dynamic Systems Modeling. In L. Schmitt Olabisi, M. McNall, W. Porter, & I. Zhao (Eds.), Innovations in Collaborative Modeling (pp. 29–46). Michigan State University Press.
Deffuant, G., Neau, D., Amblard, F., & Weisbuch, G. (2000). Mixing beliefs among interacting agents. Advances in Complex Systems, 03(01n04), 87–98. https://doi.org/10.1142/S0219525900000078
Deffuant, G., Amblard, F., & Weisbuch, G. (2004). Modelling Group Opinion Shift to Extreme: the Smooth Bounded Confidence Model. ArXiv Preprint, 1–12. https://arxiv.org/abs/cond-mat/0410199
Dickes, A. C., & Sengupta, P. (2013). Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models. Research in Science Education, 43(3), 921–953. https://doi.org/10.1007/s11165-012-9293-2
Dickes, A. C., Sengupta, P., Farris, A. V., & Basu, S. (2016). Development of Mechanistic Reasoning and Multilevel Explanations of Ecology in Third Grade Using Agent-Based Models. Science Education, 100(4), 734–776. https://doi.org/10.1002/sce.21217
Filatova, T., Verburg, P. H., Parker, D. C., & Stannard, C. A. (2013). Spatial agent-based models for socio-ecological systems: Challenges and prospects. Environmental Modelling and Software, 45, 1–7. https://doi.org/10.1016/j.envsoft.2013.03.017
Galliard, J.-F. L., Ferriere, R., & Dieckmann, U. (2003). The adaptive dynamics of altruism in spatially heterogeneous populations. Evolution, 57(1), 1–17. http://links.jstor.org/sici?sici=0014-3820%28200301%2957%3A1%3C1%3ATADOAI%3E2.0.CO%3B2-6
Garretson, A., & Crerar, L. D. (2021). Moths and Frogs and E. coli, Oh My!: Agent-based Modeling of Evolutionary Systems. CourseSource, 8. https://doi.org/10.24918/cs.2021.35
Ghorbani, A., & Bravo, G. (2016). Managing the commons: A simple model of the emergence of institutions through collective action. International Journal of the Commons, 10(1), 200–219. https://doi.org/10.18352/ijc.606
Gintis, H., & Helbing, Dirk. (2015). Homo Socialis: An Analytical Core for Sociological Theory. Review of Behavioral Economics, 2(1–2), 1–59. https://doi.org/10.1561/105.00000016
Gkiolmas, A., Karamanos, K., Chalkidis, A., Skordoulis, C., Papaconstantinou, M., & Stavrou, D. (2013). Using simulations of NetLogo as a tool for introducing greek high-school students to eco-systemic thinking. Advances in Systems Science and Applications, 13(3), 276–298.
Gkiolmas, A., Chalkidis, A., Papaconstantinou, M., Iqbal, Z., & Skordoulis, C. (2015). An alternative use of the NetLogo modeling environment, where the student thinks and acts like an Agent, in order to teach concepts of Ecology. Proceedings of the 9th Pan-Hellenic Conference with International Participation: “ICT’s in Education” (HCICTE 2014) 3rd-5th October 2014, University of Crete, Rethymno, Greece, 379–386. http://arxiv.org/abs/1501.05779
Grimm, V., Berger, U., Deangelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221, 2760–2768. https://doi.org/10.1016/j.ecolmodel.2010.08.019
Guénin-Carlut, A. (n.d.). Cognitive agency in sociocultural evolution. A proposal to ground social modelling in the active inference framework.
Hauert, C., Traulsen, A., Brandt, H., Nowak, M. A., & Sigmund, K. (2007). Via freedom to coercion: The emergence of costly punishment. Science, 316(5833), 1905–1907. https://doi.org/10.1126/science.1141588
Henrich, J., & Boyd, R. T. (2001). Why people punish defectors: Weak conformist transmission can stabilize costly enforcement of norms in cooperative dilemmas. Journal of Theoretical Biology, 208(1), 79–89. https://doi.org/10.1006/jtbi.2000.2202
Horn, E., & Gisi, L. M. (2009). Schwärme. Kollektive ohne Zentrum. Eine Wissensgeschichte zwischen Leben und Information. transcript Verlag.
Jacobson, M. J., Kim, B., Pathak, S., & Zhang, B. H. (2013). To guide or not to guide: issues in the sequencing of pedagogical structure in computational model-based learning. Interactive Learning Environments, 23(6), 715–730. https://doi.org/10.1080/10494820.2013.792845
Jager, W., Verbrugge, R., Flache, A., Roo, G. de, Hoogduin, L., & Hemelrijk, C. (2017). Advances in Social Simulation 2015 (W. Jager, R. Verbrugge, A. Flache, G. de Roo, L. Hoogduin, & C. Hemelrijk, Eds.; Vol. 528). Springer International Publishing. https://doi.org/10.1007/978-3-319-47253-9
Janssen, M. A., & Ostrom, E. (2006). Adoption of a New Regulation for the Governance of Common-Pool Resources by a Heterogeneous Population. In J.-M. Baland, P. Bardhan, & S. Bowles (Eds.), Inequality, Cooperation, and Environmental Sustainability (pp. 60–96). Princeton University Press.
Janssen, M. A., Lee, A., & Waring, T. M. (2014). Experimental platforms for behavioral experiments on social-ecological systems. Ecology and Society, 19(4). https://doi.org/10.5751/ES-06895-190420
Janssen, M. A., Radtke, N. P., & Lee, A. (2009). Pattern-oriented modeling of commons dilemma experiments. Adaptive Behavior, 17(6), 508–523. https://doi.org/10.1177/1059712309342488
Joshi, J., Couzin, I. D., Levin, S. A., & Guttal, V. (2017). Mobility can promote the evolution of cooperation via emergent self-assortment dynamics. PLoS Computational Biology, 13(9), 1–19. https://doi.org/10.1371/journal.pcbi.1005732
Kaaronen, R. O., & Strelkovskii, N. (2020). Cultural Evolution of Sustainable Behaviors: Pro-environmental Tipping Points in an Agent-Based Model. One Earth, 2(1), 85–97. https://doi.org/10.1016/j.oneear.2020.01.003
Ke, L., Sadler, T. D., Zangori, L., & Friedrichsen, P. J. (2021). Developing and Using Multiple Models to Promote Scientific Literacy in the Context of Socio-Scientific Issues. Science and Education, 30(3), 589–607. https://doi.org/10.1007/s11191-021-00206-1
Kornhauser, D., Wilensky, U., & Rand, W. (2009). Design Guidelines for Agent Based Model Visualization. Journal of Artificial Societies and Social Simulation, 12(2), 32. http://jasss.soc.surrey.ac.uk/12/2/1.html
Leighton, G. M. (2014). Multiple interactive public goods games allows for exploration of evolutionary mechanisms that maintain cooperation. Evolution: Education and Outreach, 7(1), 19+. https://doi.org/10.1186/s12052-014-0019-y
Lounsbury, D. W., Fredericks, L., Jimenez, C., Martin, S. N., Lim, J., Nimmer, K., Heo, M., Levine, R., Bouchard, M., & Wylie-Rosett, J. (2020). Using Systems Thinking to Promote Wellness Program Planning and Implementation in Urban High Schools. In L. Schmitt Olabisi, M. McNall, W. Porter, & I. Zhao (Eds.), Innovations in Collaborative Modeling (pp. 241–266). Michigan State University Press. https://doi.org/10.14321/j.ctvz9396g.16
McElreath, R., & Boyd, R. T. (2007). Mathematical Models of Social Evolution. A Guide for the Perplexed. University of Chicago Press.
Müller, B., Bohn, F., Dreßler, G., Groeneveld, J., Klassert, C., Martin, R., Schlüter, M., Schulze, J., Weise, H., & Schwarz, N. (2013). Describing human decisions in agent based models - ODD + D, an extension of the ODD protocol. Environmental Modelling & Software, 48(0), 37–48. https://doi.org/http://dx.doi.org/10.1016/j.envsoft.2013.06.003
Naivinit, W., Le Page, C., Trébuil, G., & Gajaseni, N. (2010). Participatory agent-based modeling and simulation of rice production and labor migrations in Northeast Thailand. Environmental Modelling & Software, 25(11), 1345–1358. https://doi.org/10.1016/j.envsoft.2010.01.012
Natalini, D., Bravo, G., & Jones, A. W. (2019). Global food security and food riots – an agent-based modelling approach. Food Security, 11(5), 1153–1173. https://doi.org/10.1007/s12571-017-0693-z
Orach, K., Duit, A., & Schlüter, M. (2020). Sustainable natural resource governance under interest group competition in policy-making. Nature Human Behaviour, 4(9), 898–909. https://doi.org/10.1038/s41562-020-0885-y
Pepper, J. W., & Smuts, B. (2001). Agent-based modeling of multilevel selection: The evolution of feeding restraint as a case study. Natural Resources and Environmental Issues, 8, 57–68. http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1340&context=nrei
Pepper, J. W., & Smuts, B. B. (2002). A mechanism for the evolution of altruism among nonkin: Positive assortment through environmental feedback. American Naturalist, 160(2), 205–213. https://doi.org/10.1086/341018